Publications/Patents


PATENTS

US Patent (Granted (to be published))
“Improving Multi-Modal Machine Learning Models Through Dimensionality Standardization“
Inventors: Onur Boyar, Indra Priyadarsini, Seiji Takeda, Lisa Hamada (IBM)

JP Patent JP2025-97645A
“Latent-space–based discovery method for inorganic crystal structures using generative models and Bayesian optimization”
(JP official title: 「探索方法、情報処理装置、プログラム」)
Inventors: Shunsuke Tonogai, Tomoya Itakura (DENSO Corp.), Ichiro Takeuchi, Onur Boyar, Yuji Tanaka, Yanheng GU (Nagoya University)


PUBLICATIONS

• Boyar, O., Hanada, H., Takeuchi, I. (2025), “Conditional Latent Space Molecular Scaffold Optimization for Accelerated Molecular Design”, AI Robot Driving Science Symposium.

• Boyar, O., Priyadarsini, I., Takeda, S., Hamada, L. (2025), “LLM-Fusion: LLM-Fusion: A Novel Multimodal Fusion Model for Accelerated Material Discovery”, Association for the Advancement of Artificial Intelligence (AAAI) 2025 Workshop on AI to Accelerate Science and Engineering (to appear)

Hamada, L., Priyadarsini, I., Takeda, S., Boyar, O. (2025), “TDiMS : A Topological Distance based Intra-Molecular Substructure Descriptor for Improved Machine Learning Predictions”, Association for the Advancement of Artificial Intelligence (AAAI) 2025 Workshop on AI to Accelerate Science and Engineering (to appear)

• Boyar, O., Hanada, H., Takeuchi, I. (2024), “Conditional Latent Space Molecular Scaffold Optimization for Accelerated Molecular Design”, arXiv:2411.01423

• Boyar, O. (2024), “De Novo Molecular and Crystal Design with Latent Space Bayesian Optimization”, Association for the Advancement of Artificial Intelligence (AAAI) 2025 Doctoral Consortium (to appear)

• Takeda, S, Priyadarsini I., Hamada, L., Shinohara H., Boyar, O, Brazil, E., Soares, E., Cipcigan, F, Braines, D. (2024), “An Open Multi-Modal Foundation Model for Materials and Chemistry”, MRS Fall Meeting 2024.

• Boyar, O., Gu, Y., Tanaka. Y., Tonogai, S., Itakura, T., Takeuchi, I. (2024), “Crystal-LSBO: Automated Design of De Novo Crystals with Latent Space Bayesian Optimization”, arXiv:2405.17881

• Boyar, O., Takeuchi, I. (2024) “Latent Space Bayesian Optimization with Latent Data Augmentation for Enhanced Exploration”, Neural Computation.

• Boyar, O., Takeuchi, I., (2023) “Latent Space Bayesian Optimization with Enhanced Exploration”, International Workshop on Pattern Recognition in Healthcare Analytics.

• Boyar, O., Iwata, K., Hanada, H., Takeuchi, I. (2023), “Exploration of novel compounds based on deep generative models”, AI Robot Driving Science Symposium.

• Boyar, O., Iwata, K., Hanada, H., Takeuchi, I. (2023) “Sample-Efficient De Novo Chemical Design with Latent Reconstruction-Aware Variational Autoencoder”, Japanese Society in Artificial Intelligence (JSAI)

• Boyar, O. (2022) “Variance Reduction in Markov Chain Monte Carlo Algorithms”, Boğaziçi University.

• Uysal, E., Bilici, S.., Zaza, S., ÅN Ozgen.c, M., Boyar, O. (2021) “Exploring the Limits of Data Augmentation in Medical Image Segmentation,” arXiv:2105.09365.

• Boyar, O., HÅNormann, W. (2020) “VarRedOpt: A Framework for Variance Reduction,” An R Library published on CRAN.

• Boyar, O., Badur, B., Metin, B. (2019), ”On applying autoencoders to solve intrusion detection problems,” 6. International Management Information Systems Conference, ˙Istanbul, Turkey, 09-12 October.

• Boyar, O., ÅN Ozen, E., Metin, B. (2018) “Detection of Denial-of-Service Attacks with SNMP/RMON,” 22nd IEEE International Conference on Intelligent Engineering Systems, Las Palmas de Gran Canaria, Spain.

 

Optimal Data Augmentation for Medical Image Segmentation, 2021

Recompy: A Framework for Recommendation, 2020